
Introduction
By including the SocketTools FileTransfer control in a project, setting some properties and responding to

events, you can quickly and easily develop an application that uploads and downloads files. Here’s the

background and the process.

The File Transfer Protocol (FTP) and Hypertext Transfer Protocol (HTTP) provide a reliable means for

sending and receiving files based on well-known and widely used standards. The SocketTools File

Transfer control provides an interface to file transfer services, allowing developers to easily upload and

download files, as well as perform remote file management functions, without requiring general

knowledge of network programming or how the specific application protocols work.

The SocketTools File Transfer control provides a single interface that supports FTP and HTTP using

standard Uniform Resource Locators (URL). For most applications, this is the only control that will be

needed to upload and download files. However, in some cases a program may require the advanced

features of a specific SocketTools control, such as posting a query to a web server. In this situation, the

File Transfer control can be seamlessly integrated with the other SocketTools controls to build a more

complex solution that requires a greater degree of customization.

The control is implemented as a standard COM object and is designed to be used in visual development

tools as well as various scripting environments. Any programming language which can host ActiveX

controls or create instances of a COM object should be capable of using the File Transfer control, such as

Visual Basic, Visual C++, Visual FoxPro and PowerBuilder. Server and client-side scripting is also

supported using languages such as VBScript and JScript. The control is completely self-contained and

does not require developers to redistribute the Microsoft Foundation Classes (MFC) or Visual C runtime

libraries, nor any other third-party library.

Windows Sockets
The Windows Sockets specification was created by a group of companies, including Microsoft, in an

effort to standardize the TCP/IP suite of protocols under Windows. Prior to Windows Sockets, each

vendor developed their own proprietary libraries, and although they all had similar functionality, the

differences were significant enough to cause problems for the software developers that used them. The

biggest limitation was that, upon choosing to develop against a specific vendor’s library, the developer

was "locked" into that particular implementation. A program written against one vendor’s product

would not work with another’s. Windows Sockets was offered as a solution, leaving developers and their

end-users free to choose any vendor’s implementation with the assurance that the product would

continue to work.

There are two general approaches that you can take when creating a file transfer program. One is to

code directly against the Windows Sockets API. The other is to use a high-level component which

provides a simpler interface to the library by setting properties and responding to events. This can

provide a more natural programming interface, and it allows you to avoid much of the error-prone

drudgery commonly associated with network programming. By including the File Transfer control in a

project, setting some properties and responding to events, you can quickly and easily develop an

application that uploads and downloads files.

Transmission Control Protocol (TCP)
When two computers wish to exchange information over a network, there are several components that

must be in place before the data can actually be sent and received. Of course, the physical hardware

must exist, which is typically either a network interface card (NIC) or a serial communications port for

dial-up networking connections. Beyond this physical connection, however, computers also need to use

a protocol which defines the parameters of the communication between them. In short, a protocol

defines the "rules of the road" that each computer must follow so that all of the systems in the network

can exchange data. One of the most popular protocols in use today is TCP/IP, which stands for

Transmission Control Protocol/Internet Protocol.

By convention, TCP/IP is used to refer to a suite of protocols, all based on the Internet Protocol (IP).

Unlike a single local network, where every system is directly connected to each other, an internet is a

collection of networks, combined into a single, virtual network. The Internet Protocol provides the

means by which any system on any network can communicate with another as easily as if they were on

the same physical network.

The Transmission Control Protocol (TCP) offers a full-duplex byte stream which may be read and written

to in a fashion similar to reading and writing a file. TCP is used for both FTP and HTTP as the underlying

network protocol to provide a reliable means of exchanging data between the local system and the

server.

Protocol Standards
The standards that form the foundation for sending and receiving files over the Internet and corporate

intranets are defined in documents called RFCs (Request For Comments) which describe how the various

protocols should be implemented. At this writing, not all of the rules for secure FTP over TLS have

reached the status of RFCs, but have been derived in part from Internet Engineering Task Force (IETF)

drafts. The following documents were used when implementing the File Transfer control:

RFC 959 documents the File Transfer Protocol (FTP), which is used for file transfer between a client and

a server, and for remote management of files on a server. The Internet draft document "Securing FTP

with TLS" describes a mechanism that can be used by FTP clients and servers to implement security and

authentication using the TLS protocol defined by RFC 2246 and the extensions to the FTP protocol

defined by RFC 2228.

RFC 1945 documents Version 1.0 of the HyperText Transfer Protocol (HTTP), and RFC 2616 documents

Version 1.1 of the protocol. These standards govern the communication of client applications such as

browsers with web servers. The File Transfer Control implements the GET and PUT commands of these

standards.

Uniform Resource Locator (URL)
The Uniform Resource Locator or URL is a way to identify a specific resource, such as a file. It is

commonly used with web browsers, but can also be used to identify files on FTP servers as well. The File

Transfer control supports the use of both HTTP and FTP URLs to make it easy to specify the location of a

file on a file server. The protocol that is used is determined by the URL scheme. For file transfers using

FTP, a URL will have the following format:

ftp://[username : password] @] host [:port] / [path / ...] [filename]

If no user name and password are provided, then the client session will be authenticated as an

anonymous user. If a path is specified as part of the URL, the file will be located in that directory on the

server. It’s important to keep in mind that the paths in an FTP URL are relative to the home directory of

the user account and are not absolute paths starting at the root directory on the server.

For file transfers using HTTP, a URL will have the following format:

http://[username : password] @] host [:port] / [path / ...] [filename]

A username and password are only required if access to the resource is restricted. If no user credentials

are provided, then the client will not provide any authentication information to the server.

The File Transfer control supports the use of both types of URLs as the remote file name for GetFile

(download) and PutFile (upload) operations. For simple file transfer operations that involve only a single

file, a single call to either of these methods using a URL is all that is required.

File Transfer Control
The File Transfer control has properties and methods which can be used for two general functions: the

transfer of files between a local machine and a remote machine on which a file or web server is running,

and the management of remote files on an FTP server. The interface is designed to be simple and

intuitive, yet flexible enough to handle a wide variety of development needs. The developer may choose

to manage details of a connection to a server and subsequent file transfers explicitly, or may simply

supply a URL in the format that would be acceptable to a browser. Multiple file transfers using wildcards

are also supported with the File Transfer Protocol. The file management functions that are available

while connected to an FTP server include obtaining lists of files and directories, creating directories,

changing directories, removing directories and renaming and deleting files.

Service Ports
By convention, most file servers listen on the following ports:

Protocol Standard Secure
File Transfer Protocol 21 990
Hypertext Transfer Protocol 80 443

If you leave the ServerPort property at its default value of zero, then the FileTransfer control will

automatically select the port according to the value of the ServerType and Secure properties. However,

you can override the standard port values by setting the ServerPort property. This enables your

application to establish a connection with a server that is configured to use non-standard port numbers.

Note that secure connections are not supported by the Freeware version of the File Transfer control. If

your application requires a secure connection, then you can purchase a SocketTools development

license that will provide you with that functionality.

Authentication
FTP servers generally require a user name and password in order to transfer or manage files during a

session. Many servers support anonymous logins, in which a user name and password must still be

supplied, but are not authenticated. If no user name and password are provided when establishing a

connection, the control will use anonymous authentication by default.

HTTP servers generally do not require a user name and password in order to download files, but may

require authentication when uploading files. By default, the File Transfer control encodes the user name

and password for HTTP according to the Basic Authentication scheme.

Proxy Servers
In certain environments, connection to an FTP or HTTP server must be made explicitly through a proxy

server. The File Transfer control supports this with a set of properties (ProxyType, ProxyServer,

ProxyPort, ProxyUser, ProxyPassword) that must be set before attempting a connection. If the

ProxyType is nonzero, then the remaining proxy-related properties are used by the control.

There is greater variation among proxies used for FTP than is the case for HTTP. If an FTP proxy is

encountered that does not fall into one of the categories explicitly supported by the control, then the

fileProxyOther proxy type should be used, and the Command method should be used to send any

custom commands that are required to authenticate the user in accordance with instructions provided

by the proxy vendor.

Uploading Files
The File Transfer Protocol supports uploading files from the client to the server in a universally

implemented manner. The only limitations are those imposed by the server administrator and the

access rights of the authenticated user.

Uploading files using the Hypertext Transfer Protocol can be more complicated because there are

several different methods that are used and not all servers are configured to support file uploads. File

uploads are typically implemented using either the PUT or POST command. Most web servers do not

support the use of the PUT command by default. Those servers that do support the command usually

require that the client be authenticated prior to permitting the transfer. The control's PutFile method

uses this command.

The POST command is a more common method of uploading a file and it is what's used when a form

displays a button that allows the user to browse for a file on the local system and then submit it to the

web server for processing. The control's PostFile method uses this command. Note that the File Transfer

control does not provide extensive support for submitting form data. For advanced functionality such as

creating a virtual form and submitting the data to the server, it is recommended that you use the

SocketTools component instead.

Persistence
When using the File Transfer Protocol, any number of file transfers may be performed during a single

session. There are actually two connections established during a session. The first is the command

channel which is used to authenticate the session and issue commands. The second is the data channel,

which is used during the actual data transfer during a file upload or download.

The Hypertext Transfer Protocol may use either transient or persistent connections. The KeepAlive

property enables the application to indicate to the server whether or not the connection should persist.

However, it is important to note that the server may choose to close the connection even if the client

requests a persistent connection. If this occurs, the control will automatically attempt to reconnect to

the server, but the application must be prepared to handle any potential errors when requesting

multiple files from a web server.

Firewalls
Typically, firewalls are configured to allow connections to be made on the standard ports. HTTP business

is transacted on a single connection, and rarely encounters firewall problems.

However, in accordance with the FTP standards, each FTP file transfer or file listing is transacted on a

separate connection, using higher-numbered ports that are assigned dynamically from a pool of

currently-used ports. These ports are assigned by the underlying network software. Independent of the

network software, a firewall may be configured to block access to higher-numbered ports. The symptom

of firewall blockage with FTP is that the client can login to the server, and can accomplish certain

management functions, but no file transfers or file listings can be done.

If the firewall is on the server side, then the Boolean property Passive should be False. If the firewall is

on the client side, then Passive should be True. If there are firewalls on both sides of the connection,

then some relaxation in the firewall constraints must be implemented. For example, the firewall on the

server side may be configured to allow inbound connections from the client on a limited number of

ports.

The File Transfer control uses this basic model for file transfer:

Connect to the server using the Connect method.

Upload and/or download one or more files using PutFile or GetFile.

Disconnect from the server using the Disconnect method.

The File Transfer control has implemented this model both explicitly in multiple steps, as well as

implicitly when using a URL. In addition, wild-carded multiple file transfers are supported for FTP. A

developer may choose whichever approach best suits his application.

Redirection of download requests for HTTP is supported silently, provided that the server supplies

sufficient information to support the redirection.

A connection to a server is established using the Connect method:

FileTransfer1.Connect [ServerName] [,ServerPort] [,UserName] [,Password]

[,Timeout] [,Options]

All of the parameters of the Connect method are optional. The values of missing parameters are taken

from the current values of the properties of the same name.

The behavior of the Connect method can be further modified by other property values, namely:

The Secure property determines whether or not to negotiate a SSL connection.

The properties ProxyServer, ProxyPort, ProxyUser, and ProxyPassword are used to establish a

connection through a proxy server, according to the value of ProxyType.

The type of server (FTP or HTTP) is inferred either from the ServerType property, or from the ServerPort

property or parameter.

The file transfer is typically implemented using either the PutFile or GetFile methods:

FileTransfer1.PutFile LocalFile, RemoteFile

FileTransfer1.GetFile LocalFile, RemoteFile

These methods may be used repeatedly following a single connection to a server. Note that in the case

of an HTTP server, the KeepAlive property should be set to a value of true in order to transfer multiple

files on a single connection. Otherwise, the connection will be terminated at the completion of a single

file transfer, and the client must create a new connection for a subsequent transfer.

The connection to the server is terminated by calling the Disconnect method:

FileTransfer1.Disconnect

Note that if a remote file is specified by a URL, then the connection need not be made explicitly. Instead,

the control will silently connect before each file transfer.

When connected to an FTP server, a client application using the File Transfer control may transfer

multiple files in a single operation.

Put- and/or get-of-multiple-files is implemented by:

FileTransfer1.PutMultipleFiles LocalDirectory, FileMask

FileTransfer1.GetMultipleFiles LocalDirectory, FileMask

When downloading files from an HTTP server, the FileTransfer control is able to apply certain forms of

redirection information provided by the server, if the requested file has been moved. Namely, if the

server signals the redirection by a 300-level response code that the HTTP standards have reserved for

the purpose, and if the server also supplies a Location response header for the new location of the file,

then the control will silently apply the redirection information to obtain the file.

Some servers may supply redirection information in the form of "meta tags" in an HTML document. The

current version of the File Transfer control does not recognize and analyze meta tags.

By default, the File Transfer control overwrites existing files on the target machine. However, for an FTP

transfer, the transferred data will be appended to the target file or files, provided that:

FileTransfer1.AppendFile = True

Some FTP servers support the ability to resume an interrupted transfer. In order to enable this capability

from the File Transfer control, invoke GetFile or PutFile with an additional, optional argument, which is

a byte offset:

FileTransfer1.PutFile LocalFile, RemoteFile, Offset

FileTransfer1.GetFile LocalFile, RemoteFile, Offset

Starting at the specified Offset within the source file, transferred data will be appended to the target

file. This feature should be used only for binary file transfers. For ASCII file transfers, this feature should

not be used, due to the potential transformation of line termination characters (between Windows and

UNIX systems, for example).

The File Transfer control can be used to generate file listings when connected to an FTP server. The

general model for generating file listings is:

OpenDirectory

ReadDirectory (in a loop)

CloseDirectory

The first parameter of the OpenDirectory method is required to be present. If it is an empty string ("" in

Visual Basic), it will be interpreted as the current directory. In general, it may be a path name. It may

specify a subset of files in a directory by use of a file mask.

Examples:

' Generate a listing for the current directory

FileTransfer1.OpenDirectory

' Generate a listing for a specified directory

FileTransfer1.OpenDirectory "/usr/myDirectory"

' Generate a listing for files in the current directory

FileTransfer1.OpenDirectory "*.txt"

Some FTP servers do not properly implement the generation of a file listing for a specified path, but can

only deal with the current directory. If ReadDirectory returns improper results, try setting the current

directory to the desired directory before OpenDirectory:

FileTransfer1.ChangeDirectory "/usr/myDirectory"

FileTransfer1.OpenDirectory

The ReadDirectory method has several output parameters:

ReadDirectory(FileName [,FileLength] [,FileDate] [,FileOwner] [,FileGroup]

[,FilePerms] [,IsDirectory])

The default behavior of the ReadDirectory method is to automatically detect the format of the file

listing provided by the FTP server, and to parse each entry in the listing to fill its output parameters. The

DirectoryFormat property may also be set explicitly to one of the supported formats before calling

OpenDirectory, to force the control to interpret the listing provided by the server in a specified fashion.

Note that this is rarely needed.

It is not required that you specify all of the arguments to the ReadDirectory method. Only the first

output parameter of the ReadDirectory method is required:

' List only names and dates

FileTransfer1.ReadDirectory FileName,,FileDate

There are circumstances in which a developer may choose to interpret the file listing in the application

code, rather than relying upon the control to parse the listing provided by the FTP server. These

circumstances include:

The server deviates from the format that the control has auto-detected, or which the application has

specified. In this case, entries that cannot be understood by the control will be skipped.

The server uses a directory format that is not supported by the control. In this case, entries that cannot

be understood in any detail by the control will be skipped.

A directory contains an extremely large number of files. In this case, the control may exhaust memory

that is dynamically allocated for retaining parsed directory entries before it has completed processing

the directory.

In any of these circumstances, the application may specify the optional second parameter ParseList of

the OpenDirectory method to be False, meaning "unparsed". When this is done, the unprocessed

directory entries will be returned in the FileName output parameter, and the remaining output

parameters may be omitted. Note that parameters that are not omitted will return empty strings.

If an application does not interrupt the ReadDirectory loop, and all entries are successfully processed,

then ReadDirectory will eventually return an error indicating that the end of the directory listing has

been reached.

If the ParseList property was set to a value of true, the ReadDirectory method will return a value of

fileErrorEndOfDirectory when the last file has been returned. If the ParseList property is set to false, the

method will return a value of fileErrorEndOfData.

Regardless of how the end of the listing data is indicated, the directory listing must be explicitly

terminated by calling the CloseDirectory method.

nError = FileTransfer1.OpenDirectory(strDirName)

If nError > 0 Then

 MsgBox FileTransfer1.LastErrorStrong, vbExclamation

 Exit Sub

End If

Do

 nError = FileTransfer1.ReadDirectory(strFileName, _

 dwFileLength, strFileDate, _

 strFileOwner, strFileGroup, _

 dwFilePerms, bIsDirectory)

 If nError > 0 Then

 If nError <> fileErrorEndOfDirectory And _

 nError <> fileErrorEndOfData Then

 MsgBox FileTransfer1.LastErrorStrong, vbExclamation

 End If

 Exit Do

 End If

Loop

FileTransfer1.CloseDirectory

To get information about a single file, it is not necessary to list all of the files in a directory. The

GetFileStatus method can be used instead to obtain information about a specific file. The first

parameter specifies the name of the file and the remaining arguments are passed by reference and will

contain information about the file when the method returns.

Dim strFileName As String

Dim nFileLength As Long

Dim strFileDate As String

Dim strFileOwner As String

Dim strFileGroup As String

Dim nFilePerms As Long

Dim bIsDirectory As Boolean

Dim nError As Long

nError = FileTransfer1.GetFileStatus(_

 strFileName, _

 nFileLength, _

 strFileDate, _

 strFileOwner, _

 strFileGroup, _

 nFilePerms, _

 bIsDirectory)

The File Transfer control can be used to manage remote files when connected to an FTP server. File

name syntax must be that of the remote system.

Change Directory
The ChangeDirectory method changes the current working directory on the server.

FileTransfer1.ChangeDirectory "/user/myDirectory"

Create Directory
The MakeDirectory method creates a new directory on the remote FTP host.

FileTransfer1.MakeDirectory "/user/myNewDirectory"

Remove Directory
The RemoveDirectory method removes a directory on the remote FTP server.

FileTransfer1.RemoveDirectory "/user/myUnwantedDirectory"

Delete File
The DeleteFile method deletes an existing file from the remote FTP server.

FileTransfer1.DeleteFile "myFile"

Rename File
The RenameFile method changes the name of an existing file on the FTP server.

FileTransfer1.RenameFile "OldName", "NewName"

Quick Start Guide
This section is provided as a means to quickly get started with the File Transfer control. The examples

provided in this section presume some familiarity with the Visual Basic programming language.

However, the basic concepts are the same regardless of what language is used. Please refer to the

technical reference for complete information on all of the properties, methods and constants used by

the control. Before performing any of the steps in this guide, you should have installed the File Transfer

control on your development system.

To include the control in your project in Visual Basic, simply select the Project|Components...|Controls

menu option and select the SocketTools File Transfer. In other languages, follow the normal steps that

are taken to include an ActiveX control in your development project.

In order to transfer files to or from a server, or to perform remote file management on a server, it is

necessary to establish a connection to the server. The File Transfer control can establish the connection

explicitly, with the Connect method. A connection can also be made implicitly using information inferred

from a URL. The discussion in this section will be about explicit connections.

Regardless of how the connection is established, certain information is required. Information that is

always required includes:

Server name

Server type

Server port

Whether or not the server is secure

The server name may be a string such as "ftp.sockettools.com" or "www.amazon.com". The string may

also be an IP address, such as "128.121.218.65".

The server type is either FTP (File Transfer Protocol) or HTTP (HyperText Transfer Protocol).

The server port is a number associated with the service that is being provided. Usually, FTP and HTTP

servers use port numbers that have been set by standards.

A secure server is one that supports the SSL (Secure Sockets Layer) protocol, or its successor, the TLS

(Transport Layer Security) protocol. These protocols allow the parties to a network transaction to

determine whether the other party will be "trusted", and to agree upon an encryption scheme that will

be applied to all data exchanged during the transaction.

The server port, server type, and whether the server is secure are inter-related, and it is not generally

necessary to explicitly specify all three. Here are the guidelines that describe the relationship among

them:

If the server type is undefined, then the port number will be used to determine the server type. Namely,

a port number of 21 or 990 corresponds to FTP, and a port number of 80 or 443 corresponds to HTTP.

Any other port number will be treated as an error if the server type is not specified.

If the server port is specified as 0, then the server type and whether a secure connection is desired will

determine the actual port number to be used. Namely, for non-secure FTP, port 21 will be used; for

secure FTP, port 990 will be used; for non-secure HTTP, port 80 will be used; for secure HTTP, port 443

will be used.

If a server port other than 21, 990, 80, or 443 is specified, then a server type must be explicitly specified.

Otherwise, an error will result. In addition, the connection will be non-secure or secure according to

whether security is explicitly specified.

Beyond the server name, server type, server port, and security, there are additional settings that may be

relevant to establishing a connection.

FTP connections almost always require a user name and password. If neither is specified, the control will

attempt an "anonymous" login. Not all FTP servers support anonymous login. In rarer circumstances, an

account name may also be required. HTTP rarely requires a user name and password for downloads.

Either FTP or HTTP servers may be accessible only through a proxy server in certain circumstances. In

those circumstances, a set of properties related to proxies must be specified before connecting. Please

see the Technical Reference for further details.

Explicit connection to a server using the Connect method should be used if you plan to do multiple file

transfers in a single session, or you wish to generate file listings or do other remote file management

activities with an FTP server.

The Connect method has several parameters, all of which are optional:

Connect([ServerName] [,ServerPort] [,UserName] [,Password] [,Timeout]

[,Options])

If a given parameter is missing, then the current value of the corresponding property will be used in

establishing the connection.

For example:

lResult = FileTransfer1.Connect(strServerName, nServerPort, _

 strUserName, strPassword, _

 nTimeout, lOptions)

And this is the same as this:

With FileTransfer1

 .ServerName = strServerName

 .ServerPort = nServerPort

 .UserName = strUserName

 .Password = strPassword

 .Timeout = nTimeout

 .Options = lOptions

 lResult = .Connect

End With

Note that there are properties that may affect establishing a connection, but are not available as

parameters of the Connect method. Namely ServerType, KeepAlive, Account (for FTP), and the Proxy-

related properties.

In the following examples, properties not explicitly mentioned are assumed to have their default values.

' Connect to a non-secure FTP server using a user-specified timeout

FileTransfer1.ServerType = fileServerFtp

lResult = FileTransfer1.Connect(editServerName.Text, , _

 editUserNameText, editPasswordText, _

 editTimeout.Text, lOptions)

If lResult <> 0 Then

 MsgBox "Connection attempt failed" & vbCrLf & _

 FileTransfer1.LastErrorString, vbExclamation

 Exit Sub

End If

The GetFile method may be used after connecting to an FTP or HTTP server with the Connect method.

The GetMultipleFiles method may only be used with an FTP server.

The code for the "Download" button reads the edit controls, connects to a server (FTP or HTTP),

downloads a file, and disconnects:

Private Sub cmdDownload_Click()

 Dim lResult as Long

 On Error GoTo Err_Report

 FileTransfer1.UserName = editUserName.Text

 FileTransfer1.Password = editPassword.Text

 FileTransfer1.ServerPort = editPort.Text

 lResult = FileTransfer1.Connect(editServer.Text)

 If lResult <> 0 Then

 MsgBox "Connect Failed" & vbCrLf & FileTransfer1.LastErrorString

 Exit Sub

 End If

 lResult = FileTransfer1.GetFile(editLocalFile.Text, editRemoteFile.Text)

 If lResult <> 0 Then

 MsgBox "Download Failed" & vbCrLf & FileTransfer1.LastErrorString

 Else

 MsgBox FileTransfer1.TransferBytes & " bytes transferred"

 End If

 FileTransfer1.Disconnect

 Exit Sub

Err_Report:

 MsgBox Err.Number & ": " & Err.Description

 FileTransfer1.Disconnect

End Sub

The PutFile method may be used after connecting to an FTP or HTTP server with the Connect method.

The PutMultipleFiles method may only be used with an FTP server.

SocketTools
The SocketTools File Transfer shares functionality with another Catalyst product called SocketTools. In

addition to the file transfer and management functionality that the File Transfer control provides,

SocketTools includes .NET assemblies, ActiveX controls and standard Windows libraries for many other

popular Internet application protocols. There are several different editions of SocketTools available, and

all editions provide royalty-free redistribution licensing and a thirty day money-back guarantee. Free

evaluation copies can be downloaded from the Catalyst Development website at sockettools.com.

SocketTools .NET Edition
The SocketTools .NET Edition consists of managed code assemblies for use with .NET programming

languages such as Visual Basic .NET, Visual C# and Delphi Prism. The product includes twenty classes

which provide interfaces for various Internet protocols such as the File Transfer Protocol, Hypertext

Transfer Protocol, Internet Message Access Protocol and Simple Mail Transfer Protocol. Using the .NET

Edition you can easily transfer files, send and retrieve email messages, execute commands on servers

and perform many other common tasks over the Internet. The SocketTools .NET classes are designed to

be extremely simple to use without compromising performance, and are flexible enough to perform

very complex tasks.

SocketTools ActiveX Edition
The SocketTools ActiveX Edition consists of ActiveX controls for use with visual development languages

such as Visual Basic, Visual C++ and Delphi. A total of twenty controls provide client interfaces for the

major application protocols such as the File Transfer Protocol, Simple Mail Transfer Protocol, Domain

Name Service and Telnet. Visual Basic 6.0 is fully supported and the components can be used with any

development tool that supports COM and the ActiveX control specification. The network controls

support both synchronous (blocking) and asynchronous modes of operation, as well as advanced trace

debugging facilities. All of the controls are thread-safe and can be used in multithreaded containers,

such as Internet Explorer.

SocketTools Library Edition
The SocketTools Library Edition consists of standard dynamic link libraries, and can be used by virtually

any Windows programming language that can call functions exported from a Windows DLL. A total of

twenty libraries provide client interfaces for application protocols such as the File Transfer Protocol,

Simple Mail Transfer Protocol and Telnet protocol. The API for the Library Edition is implemented with a

simple elegance that makes it easy to use with any language, and is not just for C or C++ programmers.

All of the libraries are thread-safe and can be used in multithreaded applications.

